
Harvest C      Page 1

Experiences from the Development of Harvest C
Eric W. Sink

Abstract:
This paper describes the development of Harvest C, a full C compiler and linker for the
Macintosh.    This project has revealed a number of interesting issues, partially due to its
unusual size, and partially due to the internal structure of Macintosh applications.    The
following areas will be considered:

• Memory management for large abstract data structures
• Compiling the usual Macintosh extensions to C
• Macintosh application structure and linking
• The history of Harvest C and its future directions
• Comparisons with commercial C compilers

Harvest C is freely distributable

Introduction

This paper describes the development of
Harvest C, a full C compiler and linker for
the Macintosh.    Harvest C compiles the
full ANSI C language, as well as almost all
of the MPW™ Macintosh extensions.    All
inclusive, the compiler consists of over
100,000 lines of C code and has been in
development for 19 months.    Harvest C
does not represent an advance in
compiler technology, but an advance in
the availability of development tools for
the Macintosh.    As this is the case, some
of the information presented here will not
be particularly revelatory for the
experienced student of compiler design.
It is hoped that this discussion will be of
interest and value for the Macintosh
enthusiast, both expert and novice.
Some of the material presented here is
technical, some is anecdotal.    There will
be discussion of future directions as well
as experience.

History

Harvest C began as a learning exercise in
compiler design.    Initially, all development was
done on a Sun 3, constructing a simple compiler
that generated 68020 assembly language, using

68881 instructions for all floating point
operations.    That compiler advanced to the point
that it correctly compiled itself as well as
enquire 4.31 and GNU Chess 3.12.    At this point,
Harvest C (then called Ecc) had no Macintosh
features.    As development continued, much of
the Macintosh-specific code was written on the
Sun as well.    The parser and code generator
were modified to handle pascal function
declarations.    An assembler was added and code
was written to dump object files in MPW format.
As indicated above, a replacement for the
Memory Manager was written to allow
Macintosh specific code to be written and tested.
In fact, a replacement for much of the File
Manager was written as well.    These functions
had the ability to read and write Macintosh files
on a UNIX™ system.    The files were
manipulated in Binhex format.    In those days,
Ecc could compile a C source file directly into a
Binhexed MPW object file.

The code generator for SANE™ floating point
was written on the Sun as well, though it
obviously could not be tested there.    The entire
linker was written after porting to the Mac,
because a functional equivalent of the Resource
Manager would have been a huge and futile task.

1Enquire is a program by Steven Pemberton, CWI,
Amsterdam(steven@cwi.nl), designed to test floating
point accuracy in C compilers.
2GNU Chess is distributed by the Free Software
Foundation, 657 Massachusetts Ave., Cambridge, MA
02139.

Harvest C      Page 2

In its earlier incarnations, Harvest C sported
some features that it now lacks.    It was
originally planned that Ecc would be a cross
compiler, retaining its ability to run on a UNIX
system as well as its ability to generate
assembler source for the UNIX assembler.    At
one point, Ecc successfully did function inlining
like GNU CC3.    Ecc also had the ability to
calculate and report a number of software
metrics, including Halstead’s [2], McCabe’s [3]
and others. Ecc also once included support for
much of the Objective-C [1] language.    None of
these features are currently being maintained.

Harvest C was first released in October 1991.
Although it was unreliable and had an atrocious
user interface, it was capable of generating
simple Macintosh applications.    Version 1.2 is a
substantial improvement over previous releases.

Development now takes place in the THINK C™
environment, using the THINK Class Library4 for
user interface implementation.    Since
development moved from UNIX to the
Macintosh, Harvest C no longer compiles itself.
At the current time, it would be impossible to do
so, as the source code now takes advantage of
the object oriented extensions to THINK C,
which are not part of the language which
Harvest C recognizes.    In the future, it may be
possible to extend Harvest C’s input language to
allow for self-compilation once again.

Motivation

It is the author’s opinion that a set of free
development tools would benefit the Macintosh
community.    It may be argued that Macintosh
programming is far too complex to be placed in
the hands of anyone who is not serious enough to
invest in a commercial development system.
The hope is that the existence of a usable free C
compiler will:

• Facilitate the learning of the C language on
a wider scale.

• Spark innovation in amateur programmers,
resulting in new Macintosh applications.

• Encourage others to produce and distribute
related tools.

3GNU CC is distributed by the Free Software
Foundation.
4The THINK Class Library is distributed by Symantec
Corporation with THINK C.

In general, the response from the Macintosh
community has been very positive.    It is still
unknown whether Harvest C can survive in the
presence of inexpensive commercial alternatives.

Technical Information

Overview

As of version 1.2, the user interface is somewhat
of a hybrid of MPW and THINK C.    Harvest C is
designed to be used in the same manner as
THINK C.    However, an interactive shell is
provided, reminiscent of MPW.    This will be
described later.    Harvest C does not provide an
integrated editor, but it does support the “project
file” metaphor as opposed to Makefiles.    Harvest
C relies on AppleEvents™ to communicate with
stand-alone text editors.    This mechanism will
be discussed later.

Like any typical compiler for a language like C,
Harvest C consists of a preprocessor, lexical
analyzer, parser, code generator, assembler, and
linker.    Each of these components is discussed
below.

The preprocessor and lexical analyzer are
integrated together.    All preprocessor
commands are handled “on the fly”, including
macro expansion.    The result is a stream of
preprocessed tokens, passed to the parser.    The
preprocessor/lexer is hand-written, not machine-
generated.

The preprocessor exists in two sections.    First,
the function GetCharacter is the routine that
passes individual characters to the lexer for the
construction of tokens.    The stream of
characters resulting from multiple consecutive
calls to GetCharacter corresponds to the source
file after trigraph conversion, backslash line
splicing, comment removal, and all preprocessor
directives except macro expansion.
GetCharacter is actually the interface to a larger
collection of routines.

The interface from the parser to the lexer is a
routine called GetToken.    GetToken calls the
GetCharacter routine, pieces tokens together,
and handles macro expansion.    The return value
is a code indicating the type of token that was
found.

Harvest C      Page 3

The parser in Harvest C is hand-written, not
machine-generated.    It was written using the
grammar provided by the ANSI C committee as a
reference.    As it parses the source file, it
constructs symbol tables and parse trees that
reflect the semantics of the source file in
translation.    The parser is responsible for both
syntactic and semantic error checking.    Error
messages are accumulated and presented to the
user in a scrolling log, each with its file and line
position.    The parser is also capable of
generating warnings for a number of
questionable constructs.    These warnings are
presented to the user in the same manner as
error messages.    The data structures created by
the parser bear a nearly one-to-one
correspondence with the structure of the C
language itself.

A simple code generator translates the parse
tree data structure to another data structure
which directly represents the 68000 family
assembly language.    No intermediate
representation is used.    Register allocation is
done “on the fly”, rather than employing a graph
coloring algorithm later.

There is a small peephole “optimizer” that makes
a few modifications to the 68k code stream at
this point.    Harvest C currently does not have a
“real” optimizer, as it does not support code
motion, basic block optimizations, register
coloring, loop induction variable optimizations,
or common subexpression elimination.

The 68k data structures are assembled and
converted into yet another data structure,
representing object code records.    Finally, the
object code data structures are dumped to an
object file.    The file format used is identical to
that used by the MPW linker and tools.

The Linker

Though somewhat less sophisticated, the
Harvest C linker is functionally compatible with
its MPW counterpart.    It operates as follows:

1. Read all the object files into memory.
2. Resolve all references.    This step verifies

that no symbol is defined twice.    For
every reference record, it searches for the
symbol being referenced.    Pointer links
between referenced symbols are
constructed.    Every referenced symbol is

marked as active, so that inactive symbols
may be stripped.    The linker currently is
not smart enough to strip symbols which
are only referenced by inactive symbols.
Consider Figure 1.    Each oval represents
a module.    An arrow from one module to
another represents a reference.    For
example, from the figure it can be seen
that module A references module B.
Modules A and E are inactive, because no
modules reference them.    Module B is
active, because it is referenced by module
A.    A smarter linker would deduce that
since B is only referenced by A, and A is
inactive, then B is inactive as well.    On
the other hand, module D must be
considered active, even though it is
referenced by an inactive module,
because it is also referenced by the active
module C.

A B

C

E

D

Figure 1
3. Assign A5 offsets.    Every global data

module is assigned a location in the A5
world.    On program startup, a region of
memory is allocated for the purpose of
holding global program data and the jump
table.    Register A5 is set to point
somewhere in the middle of this block,
dividing the region into two parts.    The
memory at negative offsets from A5
contains global data.    The jump table
lives above A5.    A data module might be
assidned an A5 offset of -2E6 (hex).
Code modules get A5 offsets as well, but
the offset point to the jump table entry.
The jump table is discussed below.

4. Adjust all references.    For every
reference record, the module containing
the reference must be patched with the
A5 offset of the referenced symbol.

5. Build the global data initialization
segment.    In terms of emulating the
MPW linker, this was the most difficult
aspect of implementation.    Basically, all
initialized global data must be stored in a
compressed table which is appended to
the end of the segment called %A5Init.    A
detailed explanation of the data format
would be too lengthy to include here.

6. Build the jump table.    The jump table
uses the same format as described in
Inside Macintosh.    Harvest C is currently
not smart enough to know when it is
necessary to generate a jump table entry,

Harvest C      Page 4

so the jump table contains an entry for
every function.

7. Generate the application file.    This means
dumping the CODE segments using
AddResource().    The application
signature is set as well.

8. Add a SIZE resource, configured
according to user defined options.

9. Add all resources contained in any
resource files present in the project.

Memory Management

Memory Management has been a difficult issue
throughout the development of Harvest C.    The
implementation of a compiler demands a large
quantity of complex, dynamically allocated data
structures for symbol tables, parse trees,
assembler records, and so on.    Harvest C not
only allocates many data structures, it allocates
many different kinds of data structures.
Certainly Harvest C’s data structures could be
more efficiently designed.    After all, the project
began as a learning endeavor.    However, the
services offered by the Memory Manager are
perhaps too low-level for use in the allocation of
individual blocks in a program such as this.   

UNIX memory allocation is done using
malloc(), resulting in pointers to structs.
Dynamic memory allocation on the Mac is
usually best done using NewHandle(), resulting
in Handles to structs.    This issue was ‘handled’5

by implementing a NewHandle() function on the
Sun, using malloc().

typedef char *Ptr;
typedef Ptr *Handle;
typedef unsigned long Size;

Handle NewHandle(Size n)
{

void **master;
master = malloc(sizeof(Ptr));
*master = malloc(n);
return *master;

}

The Macintosh Memory Manager simply will not
tolerate the level of abuse which may be
permissible in a UNIX virtual memory system.
The first attempt at a memory allocation strategy
was to allocate one relocatable block for each

5The author conveys his apologies for the pun.

node in a structure.    Under this scheme, a
simple linked list structure might look like this:

struct listNode {
int data;
struct listNode **next;

};

The Memory Manager offers its functionality on
friendly terms with the rest of the operating
system.    This friendliness does not come without
overhead.    The ability to relocate a block of
memory is very useful, particularly when dealing
with the limited memory available in the early
Macintosh models.    However, under the
Macintosh design, each relocatable block
requires a master pointer.    Harvest C’s
[admittedly imperfect] design of data structures
resulted in the allocation of 30,000 handles or
more during the compilation of medium-sized C
source files.    This means that over 117K of
memory is consumed by master pointers alone.
The Memory Manager does not provide
acceptable performance with such extreme
demands.

An alternative to the use of NewHandle() for
every node, is to use NewPtr().    This results in
far less overhead due to the lack of master
pointers.    However, as most Macintosh
programmers know, the resulting heap
fragmentation provides extraordinarily low
performance.

The typical solution to this problem is to
implement another layer of memory
management on top of the Memory Manager.
Many applications allocate very large chunks of
memory using NewPtr(), and allocate their own
structures from larger blocks.    A solution of this
nature was implemented, but it was later
deemed unsatisfactory.    Essentially,
implementations of this nature are application-
specific versions of malloc().    Although it
seems very un-Mac-like, a well-written malloc
library seemed the way to go. In fact, this is
currently the memory allocation strategy used by
Harvest C.    Excellent results have been obtained
thus far in the use of a malloc() written by Tim
Endres6.    This library provides the standard
functions malloc() and free().    The technique

6This malloc library may be obtained from the author
(e-sink@uiuc.edu). Tim Endres may be reached at
time@ice.com.

Harvest C      Page 5

used is to allocate large blocks of memory using
NewPtr() and carve smaller blocks out of it to fill
malloc() requests.    Endres’ library manages all
the necessary blocks lists and other data
structures internally.    It also provides support
for multiple pools, debugging information, and
statistics.

There are certainly other viable strategies for
handling memory.    Unfortunately, experimenting
with various strategies is time consuming,
because the necessary changes to the code are
extensive.    The most important lesson learned
here is that on the Macintosh, the best memory
management strategy is probably not obvious.   

Language Extensions

Harvest C supports a few important extensions
to the ANSI C standard.    These extensions are
important for their support of access to the
Macintosh Toolbox.

In the MPW C 3.2 header files, a Toolbox trap
function is typically declared somewhat like this:

#pragma parameter __D0 ReadDateTime(__A0)
pascal OSErr
ReadDateTime(unsigned long *time) = 0xA039;

This declaration contains a great deal of
information for the code generator.    First of all,
the #pragma directive specifies the location of
the arguments and return value for this function.
Using this example, Harvest C would place this
function’s single argument in register A0 instead
of pushing it onto the stack as it usually would.

Furthermore, this declaration informs us that
ReadDateTime is a trap function.    When
generating a call to this routine, Harvest C will
generate the trap 0xA039 instead of the usual
JSR instruction.

In order to allow for compilation of filter
procedures and hook functions, Harvest C also
deals correctly with normal pascal functions.
These routines receive their arguments on the
stack in the opposite order of that used by C
functions.    In addition, char and short
parameters occupy two stack bytes for pascal
functions and four stack bytes for C functions.
Finally, pascal functions remove their own
arguments from the stack, and return their
results on the stack.

All the various possibilities which can occur
when generating a function call make that aspect
of the Harvest C code generator rather
complicated.    The situation is even more
complex when struct valued functions are
considered.

Comparison with THINK and MPW

Overview

As commercial C compilers typically have a large
staff of developers and testers, it would be
completely unrealistic to presume that Harvest C
could compete effectively.    Nonetheless, as it
has been a goal to make the product usable, a
comparison to the excellent commercial
compilers is indicate of the measure of success it
has achieved.

It is not the purpose of Harvest C to compete
with the commercial offerings.    Both THINK C
and MPW are distinct products, each with its
own intrinsic value.    It is hoped that Harvest C
will be viewed in a similar manner, not as an
attempt to dethrone its excellent neighbors.

Although Harvest C has not matched either
THINK C or MPW in speed, features or
reliability, it has aimed at a certain amount of
innovation of its own.    Harvest C combines many
of the features of its commercial counterparts, in
rather unique ways.

Tcl Scripting

The development of Harvest C is taking place in
coordination with other authors working toward
a set of freely distributable tools and
applications.    We hope to provide a high degree
of integration among applications through the
use of a common scripting language, the Tool
Command Language (Tcl) [4].    Tcl7 provides a
simple but full featured language interpreter
designed to be embedded in applications.
Although each application typically provides its
own extensions to Tcl, all such applications share
the same basic scripting mechanisms.    Through
the use of standard AppleEvents, an application
may offer its “scriptability” as a service to other
programs.   

7Throughout this paper, the Tool Command Language
is referred to as Tcl and the THINK Class Library as TCL.

Harvest C      Page 6

An example of tool integration through Tcl and
AppleEvents is the communication which takes
place between Harvest C and Alpha8.    In the
shareware arena, Alpha has shown itself to be a
powerful text editor for programmers.
Coordination has taken place to allow Harvest C
and Alpha to communicate, providing a more
complete development environment.    Alpha has
the ability to accept an arbitrary Tcl script
encapsulated in an AppleEvent.    Harvest C uses
this feature by passing Tcl commands to Alpha
for various functions.    For example, double-
clicking on an error or warning message (in the
error log) will send a Tcl script to Alpha which
looks something like this:

openFile “Disk:Folder:File.c”
set pos [rowcolPos LINENUM 0]
select $pos [nextLineStart $pos]

The result is that Alpha opens the given file and
selects the given line, ready for editing at the
site of the error.    Alpha also supports a full shell,
offering a wide variety of functions to Harvest C
simply through the use of Tcl.

Another application which supports identical Tcl
scripting and communication mechanisms is
Tickle9.    Tickle is a shell utility, providing a
number of built in conversion utilities as well as
the ability to be extended using XTCL resources
(similar to HyperCard™ XCMDs).

Harvest C itself is also completely scriptable
using Tcl.    This allows the user to control the
development process in a more automated
manner.    The user accesses this functionality
either through AppleEvents or through an
integrated “shell”.    After opening the Harvest C
shell, the user may issue commands using
standard Tcl as well as a number of extensions.
Harvest C currently supports the following
extensions to the base Tcl language:

newProject ?PROJNAME?
openProject PROJNAME
closeProject
setOption OPTION BOOLEAN

OPTION BOOLEAN
setWarnings all BOOLEAN

WARNING BOOLEAN

8Alpha is a shareware text editor for the Macintosh, by
Pete Keleher (pete@rice.edu).
9Tickle is a freely distributable scripting environment
for the Macintosh, by Tim Endres (time@ice.com).

WARNING BOOLEAN
setSig OSTYPE
setPartition INTEGER
setSIZEFlags INTEGER
bringUpToDate
buildApplication ?APPNAME?
makeClean
runApplication
addFiles FILENAME(S)
removeFiles FILENAME(S)
compile CFILENAME
listProject

In addition, a set of general Macintosh extension
commands are available.    As an example, a user
might execute the following script.

cd “MyDisk:Development:myApp”
newProject myApp.π
setSig LASJ
setPartition 500
eval addFiles [glob -t TEXT *.c]
eval addFiles [glob -t rsrc *]
makeClean
bringUpToDate
closeProject

The effect of this script is to create a new
project, set its partition and signature, add a
group of C and resource files, and compile all the
C files.    Other possibilities include:

• The setOption command could be used to
compile various files with different option
settings.

• The Macintosh extension commands could
be used to interact with the user during
the build process.

• One could create a procedure to write a
formatted list of the contents of the
project file.

A Macintosh Tcl distribution is available to allow
other developers to integrate Tcl into their
applications easily.    The Tcl scripting language is
appropriate for all sorts of applications.    Let us
hope that other authors will undertake the
writing of simple, freely distributable
spreadsheets, databases and other applications,
all based on Tcl.

Harvest C      Page 7

Benchmarks

Table 1 presents a comparison of the
performance of Harvest C against THINK C.
Results from three test applications are
presented.    The Bullseye and MiniEdit
applications are sample programs which come
with THINK C.    The StdFile application is the C
source from the DTS10 Sample Code #18.    The
“Compile” and “Link” columns list absolute times
in seconds.    For each test, Harvest C’s results
for each program are presented first, with
THINK C’s ratings appearing on the following
line.    The “Code size” column indicates the
actual size of the generated code whereas the
“App size” column shows the size of the final
application, including all linked libraries and
resources.

App (Compiler) Compile Link Code
size

App size

(seconds
)

(seconds
)

(bytes) (K bytes)

Bullseye
(Harvest)

122 40 2224

(THINK) 11 6 1386
MiniEdit
(Harvest)

320 55 8774

(THINK) 18 8 5288
StdFile

(Harvest)
271 47 9040

(THINK) 12 9 5732
All timings were recorded on a Macintosh IIsi
without FPU, in 32-bit mode.    Taking nothing
away from the extraordinary speediness of the
THINK compiler, it should be noted that Harvest
C’s lack of support for precompiled header files
is responsible for some of the disparity in the
timings.    The first two tests contain less than
1,000 lines of code, ignoring header files.    The
StdFile test consists of just over 1,800 lines.

General Features

Harvest C was written to follow the conventions
of MPW C 3.2 and THINK C 5.0.    In fact,
Harvest C does not provide any libraries or
header files.    Instead, it makes use of the MPW
C headers and libraries without modification.

10Developer Technical Support (Apple Computer, Inc.)

Thus, Harvest C generates object files in MPW
format, handles most all of the same extensions

to C which are defined by MPW C, and Harvest
C’s linker is functionally compatible with the
MPW linker (although not as powerful).

Harvest C does not generate SADE™ debugging
information, nor will it accept object files
generated by MPW tools which contain SADE
information.    With these exceptions, MPW and
Harvest C have successfully shared object files
without difficulty.

In general, Harvest C is functionally somewhat of
an MPW in THINK C clothing:

• Like THINK C, Project files are used instead
of Makefiles.

• Like MPW, a single object file (file.o) is
generated for each C source file.

• Segmentation is controlled using #pragma
segment directives in the source code.

• Toolbox traps use #pragma parameter
directives and inline functions.

• Project files may contain one or more
resource files.

• Apple Events are used to communicate with
Alpha for text editing, as well as with
ResEdit™ for resource editing.

Table 2 briefly summarizes some differing
aspects of Harvest C and the two principal
commercial compilers.    This paper does not
attempt to provide an in-depth comparison.

THINK MPW Harvest
Editor Built-in Built-in External
Scripting None Shell Tcl
Build Project Makefile Project
Debugge
r

Integrate
d

SADE None

OOP C++
subset

Separatel
y

None

Table 1

Harvest C      Page 8

Conclusions

Since Harvest C was written as a learning
experience, a summary of what was learned is
fitting.    Most certainly, learning compiler design
in a proper course is much easier.    Much has
been learned during code rewrites made
necessary by inexperience.    A list of proverbs for
Macintosh compiler-writers appears below.
While these tidbits are purely the opinion of one
author, they do carry a bit of hindsight:

• Use compiler generation tools for the
parser and lexer.

• Do not be discouraged if you find that you
need to rewrite a section of code.    This is
“par for the course”.

• Pay very careful attention to the design of
your data structures, particularly parse
trees and type records.

• Peruse the relevant chapters of a compiler
design textbook before you even begin
writing the register allocator.

• Do use a class library such as TCL or
MacApp for the user interface.

• MacsBug is your best friend.
• Participate in USENET newsgroups and

electronic mail.    The exchange of ideas is
invaluable.

Future Directions

As with any compiler, Harvest C has many areas
of potential improvement.    Some parts should be
rewritten for efficiency and/or cleanliness of
design.    Currently the front end is being
rewritten to use a yacc11 parser with a
lexer/preprocessor generated using flex12.

In addition, there is much that could be done
which has simply not been possible due to time
constraints.    Possible areas include an optimizer,
a smarter linker, and support for object oriented
extensions.

Harvest C is still more of a development project
than a stable, full-featured alternative to the
commercial offerings.    In the hope that Harvest

11Yacc (Yet Another Compiler Compiler) is a compiler
generation tool distributed with most UNIX systems.
12Flex is a compiler generation tool by Vern Paxson.

C may continue to grow, beyond the efforts of a
single developer, the program is available in
source form13.    For Harvest C, the greatest
potential for positive impact upon the Macintosh
community lies in its widespread usage.

Acknowledgements

Although the responsibility for the content and
form of this paper is mine, it would not have
been the same without the help of friends.
First, thanks to Pete Keleher, who commented on
draft versions of this paper.    Also, thanks to the
many people with whom I communicate through
electronic mail and network news.    They provide
invaluable advice and feedback.    Thanks to
Waldemar Horwat and all who have helped in the
coordination of MacHack.    Finally, thanks to my
wife Lisa, for her patience and support.

References

1. Cox, B. Object Oriented Programming : An
Evolutionary Approach, Addison Wesley, Reading,
MA (1986).

2. Halstead, M.H. Elements of Software Science,
Elsevier North-Holland (1977).

3. McCabe, T.J. A Complexity Measure. IEEE
Transactions on Software Engineering SE-2, 4 (Dec
1976).

4. Ousterhout, J.K. Tcl: An Embeddable Command
Language. In 1990 Winter USENIX Conference
Proceedings, USENIX, 1990.

13Contact the author for details. Eric W. Sink
(e-sink@uiuc.edu) 1014 Pomona Drive, Champaign, IL
61821.

Table 2

